Каждая клетка человеческого организма для нормальной жизнедеятельности нуждается в постоянном снабжении энергией. В подавляющем большинстве клеток эта энергия получается в процессе окисления сахаров, прежде всего глюкозы. Фактически можно сказать, что организм сжигает сахара, так же как автомобиль сжигает горючее; этот процесс называется клеточным дыханием.
Глюкоза и кислород доставляются в ткани кровью. Когда два этих вещества вступают в химическую реакцию, они преобразуются в двуокись углерода (углекислый газ) и воду, которые переносятся кровью к специализированным органам (прежде всего легким и почкам) для выведения.
Эритроциты
В каждом кубическом миллиметре крови взрослого человека содержится около 5 млн эритроцитов (красных кровяных клеток).
Эти клетки имеют только одну функцию: транспортируют по организму дыхательные газы (кислород и углекислый газ).
Эритроциты производятся в костном мозге. В процессе развития они утрачивают ядро (часть клетки, которая содержит ДНК) и другие системы, отвечающие за синтез белка. Эритроциты человека имеют форму двояковогнутой линзы, которая обеспечивает одновременно достаточно большой объем клетки, чтобы переносить необходимое количество кислорода, и достаточно большую поверхность, чтобы обеспечить высокую скорость газообмена.
Анемия и ее причины
У здорового человека около 40-45% объема крови составляют красные кровяные клетки (это соотношение известно как гематокрит). Если гематокрит падает ниже нормального уровня, развивается анемия. Поскольку средняя продолжительность жизни эритроцита составляет около 120 дней, причинами анемии могут стать, например, слишком быстрое разрушение или, наоборот, слишком медленное производство красных кровяных клеток.
Так, при сильном кровотечении кишечник больного может оказаться не в состоянии усвоить достаточное количество железа, чтобы компенсировать потерю гемоглобина.
Еще одна причина снижения транспортной функции гемоглобина - генетические заболевания. Например, при серповидноклеточной анемии нарушается структура гемоглобина части эритроцитов. Патологические клетки хуже, чем нормальные, переносят кислород, легче разрушаются, а характерная серповидная форма затрудняет их прохождение через капилляры. Все эти факторы вместе приводят к развитию анемии.
Роль гемоглобина
Главная составляющая эритроцита, отвечающая за транспорт кислорода, - гемоглобин, сложный белок, разделенный на четыре субъединицы (глобины). Каждая из них состоит из большой полипептидной белковой молекулы и порфириновой группы, содержащей атом железа, -гема. Таким образом, каждая молекула гемоглобина способна обратимо связать четыре молекулы кислорода. Примерно 98% кислорода в крови находится в связанном состоянии. Остальные 2% растворены в плазме.
Высвобождение кислорода из эритроцитов
Высвобождение кислорода из гемоглобина запускается нарастанием содержания в крови продукта обмена - двуокиси углерода. Потребность в кислороде зависит от уровня его потребления тканями.
Кислород, связанный гемоглобином в легких, высвобождается в непосредственной близости от потребляющих его тканей.
В процессе клеточного дыхания производится большое количество углекислого газа, который диффундирует через клеточную мембрану и капиллярную стенку в плазму крови, а затем внутрь эритроцита. Нарастание концентрации двуокиси углерода внутри клетки запускает процесс высвобождения кислорода, который диффундирует в плазму, а затем в клетки ткани. Таким образом, кислород попадает именно туда, где он в данный момент необходим, а избыток двуокиси углерода уносится из тканей для выведения легкими. Только 23% образовавшегося в процессе обмена веществ углекислого газа переносится эритроцитами. Остальное транспортируется в форме ионов бикарбоната (70%) или растворенным в плазме (7%).
Фетальный гемоглобин
Поскольку концентрация кислорода в крови матери намного выше, чем в крови плода, кислород проходит через плаценту в кровеносную систему развивающегося ребенка в результате простого процесса диффузии. Фетальный гемоглобин (гемоглобин плода) структурно отличается от гемоглобина матери и намного активнее взаимодействует с кислородом. Кроме того, в миллилитре крови плода содержится на 50% больше молекул гемоглобина, чем у матери. Комбинация этих двух факторов гарантирует, что, несмотря на низкий уровень кислорода в крови плода, его ткани, тем не менее, получают достаточное снабжение для роста и развития.
Регулирование высвобождения кислорода
о время физических упражнений организму для нормального функционирования требуется больше кислорода »
Более того, зависимость между изменением уровня кислорода в тканях и скоростью его высвобождения из гемоглобина носит нелинейный характер (см. график). Поэтому даже небольшое снижение концентрации может вызвать значительный рост количества высвобождающегося кислорода. Вдобавок при физических нагрузках увеличивается кислотность крови и возрастает температура тела. Эти факторы вызывают изменение пространственной структуры гемоглобина, которое приводит к усилению связи с кислородом. Этот механизм позволяет в первую очередь снабжать кислородом те ткани, которые в нем больше всего нуждаются. Например, при беге наиболее нагруженные мышцы бедра получат больше всего кислорода.
Тело человека. Снаружи и внутри. №36 2009